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Abstract

The thermal conductivities of single crystal and polycrystalline UO2 are calculated using molecular dynamics simulations, with inter-
atomic interactions described by two different potential models. For single crystals, the calculated thermal conductivities are found to be
strongly dependent on the size of the simulation cell. However, a scaling analysis shows that the two models predict essentially identical
values for the thermal conductivity for infinite system sizes. By contrast, simulations with the two potentials for identical fine polycrys-
talline structures yield estimated thermal conductivities that differ by a factor of two. We analyze the origin of this difference.
� 2008 Elsevier B.V. All rights reserved.

PACS: 61.72.Mm; 65.40.�b
1. Introduction

Uranium dioxide, UO2, is the most commonly used
nuclear reactor fuel [1] and has been studied extensively
for over half a century [2]. One of the most important
performance metrics for nuclear fuel materials is thermal
conductivity. In electronic insulators such as UO2, thermal
transport is determined by the dynamics of atomic vibra-
tions. In crystalline materials, these vibrations are often
described in terms of phonons, with their mean free path
determining the thermal transport properties; there have
been a number of atomic level simulations of the thermal
transport properties of such materials [3–6].

While an understanding of phonon transport through a
perfect lattice is important, thermal transport is often lim-
ited by accumulated defects, particularly grain boundaries.
Molecular dynamics (MD) simulation methods can simu-
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late fairly large structures, which are necessary for materi-
als with defects. In this paper, the temperature dependence
of the thermal conductivity of both single crystal and fine-
grained polycrystalline UO2 have been determined using
two different descriptions of the interatomic interactions.
2. MD simulation of UO2
2.1. Potential models

The interatomic interactions consist of a long-range
electrostatic component and short-range interactions which
describe the materials specific largely-repulsive component.
In this work, we compare results obtained from two inde-
pendent short-range interaction models: the previously
published potential by Yamada et al. [7] and the Busker
potential [8,9]. The Busker potential [8,9] is a traditional
Buckingham potential, which is the most commonly used
interaction model for ionic materials
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Table 1
Parameters of interatomic potentials

Busker Yamada

U–U O–O U–O U–U O–O U–O

Aij [eV] 0 1761.78 9547.96 442.20 2346.15 1018.57
qij [nm] 0 0.03564 0.02192 0.03200 0.03200 0.03200
Cij [�10�6

eV nm6]
0 0 32.00 0 4.1462 0

Dij [eV] – – – 0 0 0.7810
bij [1/nm] – – – 0 0 12.50
r�ij [nm] – – – 0 0 0.2369
ZU [e] +4 +2.4
ZO [e] �2 �1.2

Table 2
Lattice parameter and elastic constants at 300 K

GULP MD Experiment
[17,35–38]Busker Yamada Busker Yamada

a [nm] 0.5481 0.5482 0.5479 0.5481 0.5478
C11 [GPa] 526 409 547 418 389–396
C12 [GPa] 118 55.0 – – 119–121
C44 [GPa] 118 53.4 – – 59.7–64.1
B [GPa] 257 174 – – 209–213
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/ðrijÞ ¼ Aij expð�rij=qijÞ �
cij

r6
ij

: ð1Þ

Here rij is the interatomic distance between atom i and j.
Aij, qij, and cij are the fitting parameters between each
atomic species. The values of the parameters are given in
Table 1.

One of the advantages of Busker model is the transfer-
ability of the potential between a variety of elements [8,9]
– it also has parameters for U3+ and U5+, thereby allowing
the effects of off-stoichiometry to be studied. By contrast,
the Yamada model is a Bushing-Ida type potential [10]
given by

/ðrijÞ ¼ Aij expð�rij=qijÞ �
cij

r6
ij

þDij exp �2bijðrij � r�ijÞ
� �

� 2 expð�bijðrij � r�ÞÞ
h i

:

ð2Þ

The first two terms are the Buckingham potential. The last
two terms are the Morse term, which provides a ‘covalent’
component. However, this term is not strictly covalent in
the sense that it does not have directionality. Due to the
assumption of partial covalency, the charges of the ions
are given by non-formal values intended to represent the
partial charge transfer between ions (see Table 1).

To avoid the prohibitive computational expense associ-
ated with the Ewald method [11], particularly for systems
with large numbers of ions, the electrostatic interactions
are calculated using the direct-summation method [12].
The direct-summation technique involves truncation of
the electrostatic force at a fixed cutoff radius, with charge
compensation on the surface of the truncation sphere.
The method has been demonstrated to be accurate and
has been successfully applied to a number of materials
[5,12]. It is also computationally very efficient, straightfor-
ward to implement, and has a computational load that
scales linearly with system size. We established its appro-
priateness for these simulations through direct compari-
sons of Ewald and direct-summation simulations.

Table 2 summarizes the structural parameters and elas-
tic properties determined using the two potentials. By con-
struction, both give good values for the lattice parameters.
We have used the General Utility Lattice Program (GULP)
[13,14] to determine the elastic properties at 300 K. GULP
uses a static method based on the quasi-harmonic approx-
imation and thus provides slightly lower estimated values
for C11 than does direct MD simulation, which includes
the dynamical motion of the ions. We can see that while
the Busker potential reproduces the value of C12 rather
well, it overestimates C11 and C44. By contrast, the Yamada
potential gives good estimates of C11 and C44, but severely
underestimates C12. As a result one overestimates and the
other underestimates the bulk modulus B = (C11 + 2C12)/3.

Recently, Govers et al. undertook an extensive compar-
ison of a number of empirical potentials for UO2, including
the two used in this study [15]. Their assessment included
both rigid-ion and shell models, and they calculated cohe-
sive energies, lattice parameters, elastic constants, dielectric
constants, C point phonon frequencies, and defect forma-
tion energies. While some potentials seemed to give a better
physical description than others, their results show that no
single potential faithfully reproduces all of the physical
properties of UO2. The two potentials used in here are thus
representative of other UO2 potentials with regards to their
materials fidelity.
2.2. Thermal expansion

Another metric of the fidelity of the potential is to com-
pare the thermal expansion of the system with experiment.
The simulations to determine the thermal expansion were
performed using Andersen’s constant pressure scheme
[16]. The simulation cell contains 6 � 6 � 6 unit cells
(2592 atoms), and the temperature of the system is con-
trolled by velocity rescaling. In order to reach equilibrium,
the simulations are run for 7.5 ps with 0.25 fs time steps.
The temperature is varied from 0 K to 2000 K at 100 K
intervals. The lattice parameter at each temperature is
obtained by the simulation cell volume average of the last
5.5 ps of the simulation.

Fig. 1 shows the normalized lattice parameter as a func-
tion of temperature; the experimental values are taken
from Fink’s critical assessment of the experimental data
[17]. Yamada’s potential shows good agreement with the
experimental thermal expansion up to about 1000 K, above
which it is systematically lower. The Busker potential gives a
systematically lower thermal expansion at all temperatures.
At low temperatures, the thermal expansions are essentially
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Fig. 1. Normalized lattice parameter of UO2 from experiment and from
MD simulation with the Busker and Yamada potentials. The small jog in
the experimental fit is a result of different recommended data fits below
and above 923 K.
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temperature independent with aYamada = 8.4 � 10�6 K�1

and aBusker = 6.2 � 10�6 K�1. The discrepancy between
our calculated value for the Yamada potential and the
previously published value of 10.1 � 10�6 K�1 [7] is most
likely due to the Wigner–Kirkwood correction to the free
energy used in analyzing their simulations. The thermal
expansion calculated with the two potentials are both smal-
ler than the experimental value of aExpt = 11.8 � 10�6 K�1.

The thermal expansion coefficient is a result of the
anharmonicity of the interactions in the material. This is
encapsulated in the Grüneisen relation

a ¼ cCv

3B
; ð3Þ

where Cv and B are the specific heat and bulk modulus,
respectively, and c is the Grüneisen parameter, which mea-
sures the dependence of the phonon frequencies on system
volume, and thus the system’s anharmonicity [18]. If the
interatomic interactions were purely harmonic, then the
Grüneisen parameter would be zero and there would be
no thermal expansion. We thus interpret the higher thermal
expansion of the Yamada model to be a result of higher
anharmonicity in the potential.

The lattice thermal conductivity of any material is finite
because of the anharmonicity of the interatomic interac-
tions that couple the harmonic phonons to each other.
Anharmonicity results in phonon scattering events, with
the Umklapp processes producing a dissipation mechanism
for energy transport [18–20].

An estimate of the lattice thermal conductivity in terms
of the Grüneisen parameter was first given by Leibfried and
Schloemann [21] and refined by Klemens [22],

j � 24

10

ffiffiffi
4
p

c2

kB

h

� �3

Mv
h3

T
: ð4Þ

Here kB is the Boltzmann constant, h is the Planck con-
stant, v and M are the volume and the mass per atom.
The only two materials constants that enter into Eq. (4)
are h, the Debye temperature, and c the frequency-aver-
aged Grüneisen parameter. From this relation, it is clear
that the thermal conductivity decreases with increasing
anharmonicity.

Through their dependences on the Grüneisen parameter,
we can use Eqs. (3) and (4) to give a simple relationship
between the thermal conductivity and thermal expansion,
in terms of the Debye temperature, the bulk modulus and
the specific heat

a2j ¼ v
h3c2

v

B
: ð5Þ

The constant v subsumes all of the non-materials constants
in Eqs. (3) and (4). In classical simulations at temperatures
above the Debye temperature (380–500 K for UO2 [23,24]),
such as we are performing here, the specific heat is essen-
tially equal to the Dulong–Petit value of 3kB. Also we
can assume that the Debye temperatures for the two poten-
tials are the same. Hence we find

j ¼ v0

a2B
; ð6Þ

where v0 ¼ vh3c2
v.

Using the values of a and B determined above for the
two potentials, we then predict

jBusker � 10:1� 10�2v0;

jYamada � 8:1� 10�2v0:
ð7Þ

Using the experimental values of B and a, Eq. (6) gives
jExpt � 3.4 � 10�2v0, which is considerably smaller than
the predictions for the Busker and Yamada potentials.
Thus, based on this very naı̈ve analysis, we expect the direct
simulations with the two potentials to give thermal conduc-
tivities for the Busker and Yamada potentials that are 3.0
and 2.4 times larger, respectively, than the experimental
values; as we shall see in the next section, these estimates
are quite accurate.
3. Thermal conductivity of single-crystal UO2

The temperature dependence of the thermal conductiv-
ity of single-crystal UO2 is calculated using the direct
method [3,25]. In this approach a heat current is set up;
the resulting temperature gradient is identified from which
the thermal conductivity is calculated from Fourier’s law.

The simulation cell is a square cylinder, long in z direc-
tion, and narrow in x and y directions: see Fig. 2. Prior to
the thermal-transport simulation, the system is heated to
the temperature of interest using a constant temperature,
constant pressure simulation algorithm and allowed to
evolve for 12.5 ps, which is sufficient for thermal and strain
equilibration. The simulation cell dimensions are then
fixed, and the heat source and heat sink are turned on to
create a steady-state heat flow. Once the system reaches
steady-state, which takes about �500 ps, the temperature
gradient is determined from an average over 250 ps, and
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Fig. 2. Simulation cell setup for the direct method for simulating thermal
conductivity. The heat source and sink are located at a quarter of the cell
length away from the center of the cell. The same amount of energy, De, is
added to the atoms in the heat source, and removed from those in the heat
sink. This setup results in two equivalent heat currents J in opposite
directions along the z axis.
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the thermal conductivity is calculated from Fourier’s law,
J = �j � dT/dx, where J is the heat current, j is thermal
conductivity tensor, and dT/dx is the temperature gradient.

In a previous study on silicon, it was shown that the
thermal conductivity depends weakly on the cross-sectional
area [25]. We have therefore chosen the cross-section of the
cylinder 4 � 4 unit cells, which is the smallest size that can
be simulated with the cutoff values used in these potentials
of Rc = 1.9a, where a is the lattice parameter. The previous
studies of Si also showed that the calculated thermal con-
ductivity depends strongly on the length of the simulation
box. Using the elementary kinetic theory for a phonon
gas, it can be shown that

j ¼ 1

3
cvvSleff ; ð8Þ

where cv is the volumetric specific heat, vS is the mean
sound velocity, and leff is the effective mean free path of
phonons. The appropriate specific heat above the Debye
temperature is given by the Dulong–Petit value for a
non-interacting gas

cv ¼ ð3=2ÞkBn; ð9Þ

where kB is the Boltzmann constant, and n is the number
density of the ions. For a cubic lattice with Nc atoms in
the unit cell, n = Nc/a

3. vS can be estimated by
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for a cubic lattice. The

effective mean free path can be written as, using Matthies-
sen’s rule for the relaxation time [25] as

l�1
eff ¼ l�1

1 þ l�1
BC; ð10Þ

where l�1
1 and l�1

BC are the mean free path of phonon–pho-
non scattering in an infinite media and phonon-boundary
scattering, respectively. In our simulation, lBC is approxi-
mated by Lz/4 since the heat source and sink are separated
by Lz/2.

Finally the thermal conductivity can be written as a
function of system length as

1

j
¼ 2a3

kBN cvS

1

l1
þ 4

Lz

� �
: ð11Þ

This means that the infinite size bulk thermal conductivity
is obtained from MD simulations by the extrapolation of
the conductivity values to 1/Lz = 0. This approach was pre-
viously applied to Si and diamond single crystals [25].

We have therefore determined the thermal conductivity
of single-crystal UO2 between 300 K and 2000 K as a func-
tion of system length. The results for the two potentials are
shown in Fig. 3 as 1/j vs 1/Lz plots, in accordance with Eq.
(11). We see that the results for the two potentials are sim-
ilar at all temperatures and system sizes.

We have determined the thermal conductivity for infi-
nite system size from the linear fits to the data in
Fig. 3. These infinite size limit thermal conductivities,
which are our best estimates of the intrinsic thermal con-
ductivity of UO2 described by these potentials, are shown
for the two potentials in Fig. 4(a) as a function of temper-
ature. Although the error bars overlap, it does appear
that the Yamada potential gives a somewhat higher esti-
mated thermal conductivity at low T than does Busker,
but has a somewhat stronger temperature dependence.
This result is reasonably consistent with the only small
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.02 0.04 0.06

1/L z  [1/nm]

1/
 [

m
K

/W
]

300 K

500 K

750 K

1000 K

1500 K

2000 K

k

th the Busker (left) and Yamada (right) potentials.



0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 0 500 1000 1500 2000

T  [K] T  [K]

 [
W

/m
K

]

Experiment
Busker
Yamada

0

5

10

15

20

25

30

35

40

45

 [
W

/m
K

]

Experiment
Busker
Yamada

a b

k k

Fig. 4. (a) Thermal conductivity of UO2 from the compilation of experimental data by Fink and simulations using the Busker and Yamada potentials.
(b) The same thermal conductivities with anharmonic correction.
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difference in thermal conductivity predicted by our anhar-
monicity analysis.

The higher values for the estimated thermal conductiv-
ity derived using the Yamada potential compared to those
previously published for this potential [7] mainly arise
from the finite-size effects which are particularly impor-
tant at low temperatures when the phonon mean-free path
is long. A secondary effect is that in this study we have
not used the Wigner–Kirkwood correction to the temper-
ature, which has a significant effect below the Debye
temperature.

As Fig. 4(a) indicates, both potentials give significantly
higher thermal conductivities at low temperatures than
the experimental values. Fig. 4(b) shows the thermal con-
ductivity corrected according to the anharmonicity analysis
in the previous section; as we can see the match between the
simulation and experiment is now much better especially
above 750 K, the temperature range of interest for
nuclear-fuel applications. It is worth stressing that this
agreement is not the result of fitting the simulation results
to the experiments, but comes from a physical analysis of
the anharmonicity in the experimental and simulated sys-
tems, via quantities that are both computationally easy to
calculate and generally experimentally available, even for
materials in which thermal transport data are lacking.
We thus attribute the majority of the difference between
the experimental and simulation values as arising from
the differences in the bulk modulus for thermal conductiv-
ity, which measures the harmonic properties of the system,
and the thermal expansion, which measures the anhar-
monic properties of the system.

The anharmonic Umklapp processes lead to the temper-
ature dependence of the thermal conductivity. Debye
showed that j � T�n, with n � 1–2 [26]. Fig. 5 is a log–
log plot of the data in Fig. 4. In each case, the thermal con-
ductivity shows power-law behavior with temperature. The
experimental results are fitted by nExpt � 0.79, while the
simulations yield nYamada � 1.14 and nBusker � 1.30, respec-
tively, which are consistent with the Debye analysis.
The systems we have simulated are structurally much
simpler than the experimental systems; this also contributes
to the discrepancy between the simulation and experimen-
tal results. In particular, in the simulations there are no iso-
topic defects, no off-stoichiometry, and no microstructural
defects (grain boundaries, dislocations, second phases etc.)
We characterize the effects of polycrystalline microstruc-
tures in the next section.

4. Thermal conductivity of polycrystalline UO2

Grain boundaries offer a significant obstacle to the trans-
port of heat in phonon conductors. In this section, we deter-
mine the thermal conductivity of a model fine-grained
polycrystal of UO2, from which we make predictions for
the grain-size dependence of its thermal conductivity.

4.1. Structure of model polycrystal

Experimental grain sizes of the range of tens or hundred
of microns are not accessible to MD simulation, since each



T. Watanabe et al. / Journal of Nuclear Materials 375 (2008) 388–396 393
grain would contain �1013–1016 ions. We simulate consid-
erably smaller systems with grain sizes from 3.8 to 6.5 nm;
these small sizes maximize the area of the grain boundary
in the system, thereby amplifying the interfacial effects.

The polycrystalline structures used in the simulations
consisted of 24 hexagonal columnar grains. When
constructing the polycrystalline structure, identical close-
packed hexagons are arranged to form a completely
periodic structure. Each hexagon is filled with single-crystal
UO2 oriented with [001] along the columnar direction. The
in-plane orientations are chosen in such a way that the
grain boundaries (GBs) between the grains are high energy
tilt GBs, which ensures that the microstructure is stable
against coarsening during the simulation. Because of the
way each grain is constructed, initially there are always a
small number of atoms in the GBs which are extremely
close to each other. To address this issue, if any two ions
are closer than 0.15 nm (66% of the nearest neighbor dis-
tance between U4+ and O2�, 0.229 nm), one of the atoms
is removed. This removal of atoms is carried out with care
to ensure the charge neutrality of the entire system. Once
the structure is created, it is quenched at 0 K to equilibrate
all of the atom positions and to eliminate any in-plane
stress on the system. It was found that no ions have anom-
alously high energies, indicating that the bonding in the
system is physically reasonable. The system was then
annealed with a constant-pressure, constant-temperature
simulation at 2000 K and slowly relaxed to 0 K to ensure
that the structure is equilibrated. Fig. 6 shows the final
relaxed polycrystalline UO2 structure for a grain size of
3.8 nm.

The columnar microstructure used here allows the sim-
ulation cell to be thin along the columnar direction. The
cutoff to the potentials is 1.04 nm, which would allow the
thickness to be as small as 4 unit cells: in our simulations,
we use 5 unit cells thick so as minimize any effects of the
system size in that direction.

Since all the grains are equiaxial and equal size, it is easy
to calculate the grain boundary area and volume fraction.
Fig. 6. The final polycrystalline structure used in the thermal conductivity
calculations. Blue and red indicate uranium and oxygen ions, respectively.
The view is along [001] in the fluorite crystal structure.
For a grain size of 3.8 nm, the area of the GB is
439.10 nm2. If we assume a unit cell for the thickness of
the grain boundary, the volume which the grain boundary
region occupies is approximately 30% of the entire volume
in both models. The structural disorder at the GBs led to a
total volume expansion of 5.5% and 5.3% for Busker and
Yamada potentials, respectively. The corresponding GB
energies are 2.73 J/m2 and 1.89 J/m2, which are consistent
with the GB energies of other ceramic materials [27,28].

After the preparation of the equilibrated structure,
the thermal expansion of this polycrystalline UO2 was
determined at 300 K. The values obtained were 7.57 �
10�6 K�1 with Busker potential and 8.92 � 10�6 K�1 for
Yamada potential, which are almost indistinguishable from
the corresponding bulk single crystal values of 7.50 �
10�6 K�1 and 8.83 � 10�6 K�1.

4.2. Thermal conductivity of polycrystalline UO2

The thermal conductivity of polycrystalline UO2 is cal-
culated using the direct method described in Section 3.
The thermal conductivity of polycrystal has been scaled
according to the anharmonic analysis. In this step, we have
assumed that the thermal expansion and bulk modulus are
essentially microstructure independent. Fig. 7 shows the
temperature dependence of j for a polycrystal with a grain
size of 3.8 nm. These calculated thermal conductivities are
considerably lower than those from the perfect crystal cal-
culations, attesting to the significant resistance of GB to the
flow of heat through the system. Unlike single-crystalline
UO2, finite-size effects are small in polycrystals because
the grain boundary scattering dominates over the pho-
non–phonon scattering. Elsewhere, we have characterized
the effect of system size on polycrystalline MgO [29], and
shown that the system size dependence is weak. Since
UO2 has significantly lower thermal conductivity than
MgO, system-size effects are expected to be even less
important.
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Fig. 7. Thermal conductivity of 3.8 nm grain polycrystalline UO2 from
simulations.
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The thermal conductivity for the polycrystal described is
considerably higher for the Busker potential than for the
Yamada potential. Since the GB energy is a measure of
the structural disorder at the interfaces, we expect that
the higher the energy associated with the GBs, the higher
the interfacial thermal resistance, and the lower the thermal
conductivity of the polycrystal. We recall that the GB ener-
gies obtained from the Busker and Yamada are 2.73 J/m2

and 1.89 J/m2, which appears to be inconsistent with this
argument. However, the Busker potential is a full charge
model, while the Yamada potential is a partial charge
model, resulting in cohesive energies of �104.482 eV/UO2

and �45.54 eV/UO2, respectively. Thus, when normalized
to the bulk cohesive energies, the GB energies are
0.26 nm�2 and 0.16 nm�2 for Yamada and Busker, respec-
tively. That is, when described by the Busker potential, the
GBs actually offer less of an obstacle to heat transport than
for the Yamada potential, which is consistent with the
higher thermal conductivity for the Busker potential than
for the Yamada potential.

The ensemble-averaged interfacial (Kapitza) resistance
of the grain boundaries in the polycrystal can be extracted
from the thermal conductivity using a simple model. There
are several models proposed, including those of Nan and
Birringer [30], Yang et al. [31], and Amrit [32]. For this
analysis, we adopt the model by Yang et al. [31] in which
the polycrystal is assumed to consist of perfect crystal
grains, with conductivities of the perfect crystal, separated
by GBs, all of which have the same thermal properties. The
interfacial conductance, GK, is then given by

GK ¼
1

d
j0j

j0 � j
; ð12Þ

where d is the grain size, j0 is the single crystal thermal con-
ductivity, and j is the thermal conductivity of polycrystal-
line UO2.

The resulting values of GK are given in Fig. 8. Both
potentials show moderate increase of interfacial conduc-
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Fig. 8. Thermal conductance of grain boundaries from 3.8 nm grain
polycrystalline UO2 simulations.
tance with temperature. This temperature increase is con-
sistent with simulation of other interfacial systems [33]
and, more importantly, with trends in experimental data
for various systems [34]. The physical origin of the increase
in conductance with temperature can be understood in
terms of the properties of the grain boundaries. As the tem-
perature increases, the anharmonicity of the interactions
among the atoms is probed more strongly. While in the
perfect crystal, the resulting scattering lowers the thermal
conductivity, this anharmonic scattering more strongly
couples modes across the interfaces, leading to better inter-
facial thermal transport.

The interfacial conductance can be recast in terms of the
Kapitza length, lj = j0/GK, where j0 is thermal conductiv-
ity of infinite size single-crystal UO2. The Kapitza length is
the thickness of perfect crystal that would offer the same
thermal resistance as the interface; thus a long Kapitza
length corresponds to a high interfacial resistance. As
shown in Fig. 9, the Kapitza length decreases strongly with
increasing temperature; this is a result of the decrease in the
thermal conductivity and the increase in the interfacial con-
ductance with temperature.

We note that for both potentials, the Kapitza length is
significantly larger than the grain diameter particularly in
the low temperature region. This is an indication that the
thermal transport in our model system is dominated by
the GBs. It also suggests that the fundamental assumption
of separable and grain-size bulk and interfacial thermal
properties used for the analysis may be violated at these
small grain sizes.

We have also investigated the effects of grain size on
thermal conductivity, for grain sizes up to 6.5 nm grains.
The inset to Fig. 10 shows an increase in thermal conduc-
tivity with increasing grain size, the result of the decrease
in the relative volume of grain boundaries in the system.
Our data on for polycrystals simulated with the Yamada
potential are fit to the model of Yang et al., thereby allow-
ing the thermal conductivity for large grain sizes to be esti-
mated. Taking the bulk single crystal conductivity of
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15.2 W/m K at 300 K, the fit gives the Kapitza conduc-
tance of 0.15 GW/m2 K, which is close to the value previ-
ously determined for the 3.8 nm polycrystal (see Fig. 8).
5. Discussion and conclusions

The simulation approaches used here are well suited to
the characterization of the thermal transport properties
of electrically insulating materials such as UO2 in which
heat is transported by atomic vibrations. However, even
in a relatively poor thermal conductor such as UO2, finite
system size effects can lead to a significant underestimate
of the thermal conductivity: the systematic variation in sys-
tem size coupled with a finite-size scaling analysis does
appear to offer a viable method for taking these effects into
account.

Finite-size effects seem to be less of a problem in the sim-
ulation of the polycrystals, particularly at these small grain
sizes, presumably because the phonon mean free path is
limited by the grain boundaries, rather than by anharmonic
phonon interactions. The analysis of the polycrystal to
obtain the interfacial conductance is not unambiguous,
since the calculated Kaptiza lengths are larger than the
grain sizes. However, the fact that the calculated thermal
conductivities of polycrystals of different grains sizes, albeit
over the narrow range of 3.8–6.5 nm, can be fit to the Yang
et al. model, strongly suggest that its use is not unreason-
able. Moreover, since the same analysis is used throughout,
we can expect the trends of interfacial conductance with
temperature to be reasonable.

Neither potential can quantitatively match the experi-
mental thermal conductivity. Based on the analysis of
Govers et al., the two potentials used in the study are of
a level of materials fidelity as others in the literature [15].
The simple relationship, Eq. (6), relating the elastic proper-
ties, thermal expansion and elastic constants suggests that a
potential with correct elastic properties and thermal expan-
sion, should well reproduce the thermal-transport proper-
ties. A truly general purpose potential would also need to
well reproduce the point defect properties. Govers et al.
[15] showed that none of the 21 potentials they examined
could satisfactorily reproduce the formation and migration
energies. There is thus considerable need potentials which
better describe UO2.
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